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SOME EXPERIENCE WITH A H1–BASED AUXILIARY SPACE AMG
FOR H(curl)–PROBLEMS

TZANIO V. KOLEV AND PANAYOT S. VASSILEVSKI

Abstract. This report provides several variants for constructing unstructured mesh
AMG preconditioners for H(curl)–problems exploiting H1

0–equivalent forms. The re-
spective variants are illustrated with extensive numerical tests.

1. Introduction

The search for efficient preconditioners for H(curl) problems on unstructured meshes
has intensified in the last few years. The attempts to directly construct AMG (algebraic
multigrid) methods had some success, see [10, 2, 7]. Exploiting available efficient MG
methods on auxiliary mesh for the same bilinear form led to efficient auxiliary mesh
preconditioners to unstructured problems as shown in [8, 5]. The disadvantage of the
latter approach is that one needs to re-discretize the given problem on a uniformly re-
fined mesh. A computationally more attractive approach was recently announced by
Hiptmair and Xu in [6]. Their method borrows the main tool from the auxiliary mesh
preconditioners in [8] and [5], namely, the interpolation operator Πh that maps functions
from H(curl) into the respective Nédélec finite element space Vh as well as its transpose.
The mapping Πh involves computing line integrals over the edges of the tetrahedral el-
ements for certain piecewise polynomial functions. The approach in [6] does not require
re-meshing the domain on a related uniformly refined mesh. It requires implementing
actions of Πh as a mapping from Sh, a related H1–conforming finite element space on
the original (unstructured) triangulation, into the Nédélec space Vh. In addition, the
method requires explicit knowledge of the curl–free components of Vh, which for Nédélec
spaces, as is well–known, are gradients of a H1–conforming (scalar) finite element space
Sh. Those are represented as the range of a sparse matrix Gh mapping the degrees of
freedom in Sh into degrees of freedom of Vh. To compute Gh, one has to expand ∇ϕi in
terms of the basis of Vh, for any basis function ϕi ∈ Sh. For the lowest order Nédélec
space, Gh is simply a “vertex”–to–”edge” mapping with entries −1 or 1. In summary,
the tools required by the method in [6], are

(i) the original H(curl)–problem in terms of a bilinear form a(·, ·), triangulation Th,
finite element (Nédélec) space Vh; the respective matrix Ah computed on the
basis of a(·, ·) and Vh.
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(ii) the scalar H1–conforming finite element space Sh which gradients give the curl–
free components of Vh. This is typically provided by a matrix Gh that maps the
degrees of freedom in Sh into the degrees of freedom in Vh.

(iii) efficient preconditioner Bh for GT
h AhGh. Since, GT

h AhGh corresponds to a finite
element discretization of a 2nd order elliptic form, Bh can be for example an AMG
preconditioner since Th is generally unstructured mesh.

(iv) the symmetric Gauss–Seidel smoother Λh for Ah.
(v) a (vector) H1–conforming f.e. space Sh associated with original triangulation Th

and the matrix representation of Πh : Sh 7→ Vh (the mapping that computes
the standard interpolant in Vh, which for the lowest Nédélec elements is based
on computing line integrals from the tangential components of vector functions).

(vi) an AMG preconditioner for the matrix ΠT
h AhΠh or a perturbed version of it

based on terms like δ0h
−2‖zh−Πhzh‖2

0. The method in [6] originally suggested to
use an optimal (A)MG preconditioner Bh based on a (vector) elliptic form b(·, ·)
discretized using the space Sh.

The resulting preconditioner (in its additive form) was based on the construction in [12].
It utilizes the three subspaces Vh, GhSh, and ΠhSh of Vh, and respective preconditioners
Λh, GhB

−1
h GT

h and ΠhB
−1
h ΠT

h , in the following additive form,

(1.1) Λ−1
h + GhB

−1
h GT

h + ΠhB
−1
h ΠT

h .

The purpose of the present report is to assess the quality of the approach in [6] by
testing various options described in the items (i)–(vi) above.

The remainder of the report is organized as follows. In Section 2 we summarize the
main idea of the approach in [6] in the present setting. In the following section 3 we
introduce a perturbed form that is later used in the definition of the auxiliary space
preconditioner, which we present in Section 4 in multiplicative form and outline a sketch
of its analysis.

The main Section 5 contains an extensive set of numerical experiments. Our conclusion
is that the best version in terms of performance is to build preconditioners on the basis
of the original form; for example, as described in item (vi) it is best if one builds directly
an AMG preconditioner for the form ΠT

h AhΠh and not on a spectrally equivalent H1

form b(·, ·).

2. Some consequences from a H(curl)–stable decompositions

In the present section we summarize the main ingredient used in [6] to derive and
analyze the auxiliary space H(curl)–preconditioner.

Consider the lowest order Nédélec space Vh ⊂ H0(curl). Let Πh be the canonical
interpolant into Vh. Through the de Rham diagram (cf. e.g., [1]), Vh is related to the
H1 conforming scalar finite element space Sh ⊂ H1

0 (Ω) and its canonical interpolation
operator Ih, i.e., one has Πh∇φ = ∇Ihφ for any φ ∈ Sh. With the purpose of defining
an auxiliary space preconditioner we will need the H1

0–conforming finite element space
Sh = (Sh)

3.
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The result in [6] exploits the following decomposition (which we assume in what follows)
of any uh ∈ Vh,

(2.1) uh = vh + Πhzh +∇φh,

with

(2.2) h−1‖vh‖0 + ‖zh‖1 + ‖∇φh‖0 ≤ C ‖uh‖H(curl).

Decomposition of the above type for the 2nd family of Nédélec elements (in place of Vh,
and Sh being quadratic conforming elements) has been used in [5].

The proof of (2.1)-(2.2) relies on the following regular decomposition of H(curl) func-
tions (cf., e.g., [9]),

u = z +∇φ.

where z ∈ H1
0 and φ ∈ H1

0 are stable components in the sense that

‖z‖1 + ‖φ‖1 ≤ C ‖uh‖H(curl).

Such decompositions are known to exist when the computational domain Ω has a con-
nected boundary.

3. An H1–equivalent form

Here we study the case of lowest order Nédélec space Vh.
Motivated by the result in [6], we introduce the following quadratic form on Sh, for a

given constant δ0 > 0,

(3.1) (Ahzh, zh) ≡ δ0h
−2‖zh −Πhzh‖2

0 + ‖ curlΠhzh‖2
0 + ‖Πhzh‖2

0.

We shall show that (Ahzh, zh) ' ‖zh‖2
1. We need to prove, that ‖zh‖2

1 ≤ C (Ahzh, zh).
The latter is seen from the decomposition zh = (zh−Πhzh)+Πhzh. Taking element–wise
gradients of both sides, one gets

‖zh‖2
1 ≤ 2

∑
τ∈Th

‖∇(zh −Πhzh)‖2
0, τ + 2

∑
τ∈Th

‖∇Πhzh‖2
0, τ

≤ C
∑

τ∈Th

h−2 ‖zh −Πhzh‖0, τ + 2
∑

τ∈Th

‖∇Πhzh‖2
0, τ

≤ C h−2 ‖zh −Πhzh‖2
0 + 2

∑
τ∈Th

‖∇Πhzh‖2
0, τ .

Now, use the fact that on every element τ ∈ Th one has Πhzh|τ = aτ + bτ × x, which is
a special type of linear polynomial. Therefore, ∇Πhzh|τ = bτ × 1, where 1 is a constant
matrix. Then,

‖∇Πhzh‖2
0, τ ≤ const ‖bτ‖2 |τ |.

Here, ‖bτ‖ is the R3 Euclidean vector norm of the constant vector bτ . Also, |τ | stands
for the volume of the tetrahedron τ ∈ Th. Next, notice that the element–wise curl of
Πhzh on τ equals 2bτ . Therefore,∑

τ∈Th

‖∇Πhzh‖2
0, τ ≤ const ‖ curlΠhzh‖2

0.

In conclusion, we have the desired H1
0–coercivity estimate

‖zh‖2
1 ≤ C (Ahzh, zh), for all zh ∈ Sh.
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This (together with the obvious H1
0 – boundedness of Ah) implies that efficient MG

method, and AMG(e) for unstructured meshes, in particular, exist for solving problems
involving Ah.

The purpose to introduce the penalty term was to ensure coercivity of the form Ah.
Our numerical experiments though did not actually need that term; i.e., the methods
based on δ0 = 0 worked very well.

4. The auxiliary space preconditioner

Let Ah be the H0(curl)–form of our main interest, Ah(uh,vh) = (curluh, curlvh) +
(uh, vh). Define now the following “two–level” preconditioner using a “smoother” Λh,
and a correction based on the space, ΠhSh. The form Ah restricted to the latter space
can be represented as ΠT

h AhΠh.
One first defines, (recall the definition (3.1) of Ah),

Bh =

[
Λh 0

ΠT
h Ah I

] [
(2Λh −Ah)

−1 0
0 Ah

] [
Λh AhΠh

0 I

]
.

The (multiplicative) auxiliary space preconditioner then reads

B−1
h = [I, Πh] B

−1

h [I, Πh]
T .

Assuming that the “smoother” is convergent, i.e., (Ahvh, vh) ≤ (Λhvh, vh), one has
(Ahuh, uh) ≤ (Bhuh, uh), and the following identity holds (cf. e.g., [11]):

(Bhuh, uh) = inf
zh∈Sh

((Ahzh, zh)

+((2Λh −Ah)
−1(Λh(uh −Πhzh) + AhΠhzh), (Λh(uh −Πhzh) + AhΠhzh))).

An estimate from above is obtained if one uses the fact that Λh −Ah is positive semi–
definite. Then,

(Bhuh, uh) ≤ inf
zh∈Sh

((Ahzh, zh)

+(Λ−1
h (Λh(uh −Πhzh) + AhΠhzh), (Λh(uh −Πhzh) + AhΠhzh))).

Using finally the Cauchy–Schwarz inequality, one arrives at,

(Bhuh, uh) ≤ inf
zh∈Sh

(2(Λh(uh −Πhzh), uh −Πhzh) + 2(AhΠhzh, Πhzh) + (Ahzh, zh)).

Now use zh (its existence follows from the stable decomposition (2.1)–(2.2)) such that
uh − Πhzh = vh + ∇φh, and the latter component can be efficiently handled by the
“smoother” Λh, i.e., ‖uh −Πhzh‖Λh

≤ η ‖uh‖Ah
. An appropriate smoother Λh is one

based on Hiptmair’s work [4]. In the present setting it can be constructed based on
standard Gauss–Seidel smoothing on the original form Ah and a V–cycle applied to the
form Ah(∇φ, ∇φ) for φ ∈ Sh ⊂ H1

0 (Ω). i.e., the original form restricted to the subspace
∇Sh.

It remains to bound the term (AhΠhzh, Πhzh). It is obvious that

(4.1) (AhΠhzh,Πhzh) ≤ (Ahzh, zh) ' ‖zh‖2
1 ≤ η ‖uh‖2

H(curl).

The last estimate, completes the upper bound

(Bhuh,uh) ≤ C (Ahuh,uh).



AN AUXILIARY SPACE (A)MG 5

Remark 4.1. In the definition of Bh we used the form Ah. However, since Ah(·, ·),
is H1

0–equivalent on Sh, it can be further replaced by any (A)MG method suitable for
general unstructured meshes. Also, as proposed in [6], one can first replace Ah with a
H1

0–equivalent form, and then by a V–cycle based on that equivalent form. In the simplest
case one can use three Laplacian–based V–cycles for each scalar component of zh ∈ Sh.

In conclusion, we showed that the auxiliary space preconditioner Bh with Ah replaced
by an (A)MG preconditioner for Ah, will give a spectrally equivalent auxiliary space
preconditioner for the original form Ah.

5. Numerical experiments

In this section we present results from numerical experiments with different versions of
the preconditioner discussed in the H1-based auxiliary space preconditioner. The setup
is given by items (i)–(vi) in the introduction. We did not find the use of the penalty term
beneficial, so in all the tests we set δ0 = 0.

In our implementation we assume that we are given the following data:

• The Nédélec stiffness matrix Ah.
• The discrete gradient matrix Gh.
• The coordinates of the vertices of the mesh (as three vectors): x, y, z.

Then, the matrix representation of Πh, can be computed by noting that

Πh =
(
Π x

h Π y
h Π z

h

)
,

where each of the blocks has the same sparsity pattern as Gh. The two nonzero entries
in the ith row of Π x

h equal the ith entry of the vector 1
2
Gh x. Similarly Π y

h and Π z
h are

determined from the vectors Gh y and Gh z. Alternatively, the user can directly provide
the vectors Gh x, Gh y and Gh z, which correspond to the representations of the functions
(1, 0, 0), (0, 1, 0) and (0, 0, 1) in the basis of the Nédélec finite element space.

We used symmetric multiplicative Hiptmair “smoothers” which differ from the usual
definition by the fact that the smoothing on the vertices is replaced by a multigrid V-
cycle. The following preconditioners were considered:

(1) Multiplicative with AMG V-cycles in the subspaces (including the auxiliary space
Sh and the Hiptmair “smoother”).

(2) Additive with AMG V-cycles in the subspaces.
(3) Multiplicative with Poisson subspace solvers based on geometric multigrid (this

is the method from [6] as discussed in Remark 4.1).
(4) Additive with Poisson subspace solvers based on geometric multigrid.
(5) Multiplicative with Poisson subspace solvers based on algebraic multigrid.

The AMG algorithm we used is a serial version of the BoomerAMG solver from the
hypre library as described in [3].

We report the number of preconditioned conjugate gradient iterations with the above
preconditioners and relative tolerance 10−6, i.e. the iterations were stopped after the
preconditioned residual norm was reduced by six orders of magnitude. In few of the tests
we also tried the corresponding two-level methods (using exact solution in the subspaces)
and listed the iteration counts in parenthesis following the V-cycle results.
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5.1. Constant coefficients. First we consider problems with constant coefficients, i.e.
we are preconditioning a discretization of the form

(curlu, curlv) + (u,v) .

The results are listed in Tables 1–6, where the following notation was used: ` is the
refinement level of the mesh, N is the size of the problem, and n1 to n5 give the iteration
count for each of the two-level preconditioners (1) to (5). When available, the error in L2

is also reported. Finally, few selected timings on a machine with 2.4GHz Xeon processor
are presented in Table 7.

The experiments show that all considered solvers result in uniform and small number
of iterations, which is in agreement with the theoretical results explained in the previous
sections. One can also observe that the multilevel results are very close in terms of
number of iterations to the two-level ones.

Note that the first two methods (based on the original form) appear to work the same,
independently of how complicated the geometry is. This is particularly interesting in
the case for the third problem, where the assumption that ∂Ω is connected (needed to
establish the decomposition in Section 2) is violated. In contrast, the third and the
forth methods (based on Poisson subspace solvers) consistently result in bigger number
of iterations, and perform much worse on the third problem.

5.2. Variable coefficients. In Tables 8–12 we report some results from tests for the
linear system arising from

(α curlu, curlv) + (βu,v) ,

where α and β are piecewise constant coefficients. Note that this was not discussed
and is not covered by the theory described in the preceding sections. The modifica-
tions to the preconditioners (1)-(5) are straightforward, for example the Poisson-based
preconditioners assemble matrices corresponding to the bilinear forms (β∇u,∇v) and
(α∇u,∇v) + (βu,v). In the present case we concentrated only on the multiplicative
AMG methods.

For problems with simple jumps (Tables 8–11), we observe stable number of iterations
both with respect to the mesh size and the magnitude of the jumps. In particular the
methods do quite well on the problem illustrated in Table 10, which was reported to be
problematic for geometric multigrid in [4]. As before, the method based on the original
form outperforms the one based on a AMG Poisson subspace solver.

In Table 12 we consider a complicated problem having a lot of jumps both in α and β.
This turned out to be a challenging tasks for all V-cycle methods. However, the two-level
results for n1 seem to indicate that a significant improvement can be achieved if a better
algebraic solver is used for the original form.

5.3. Singular problems. Tables 13–15 present results for the problem corresponding
to α = 1, β = 0, i.e., to the bilinear form (curlu, curlv). In this case the matrix is
singular, and the right-hand side, as well as the solution, belong to the space of discretely
divergence free vectors (the kernel of GT

h ). Since β = 0, the solvers were modified to skip
the correction in the space GhSh. This leads to a simpler preconditioner which in additive
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form reads

(5.1) Λ−1
h + ΠhB

−1
h ΠT

h .

The results in Tables 13–14 are quite satisfactory and comparable to those from Tables
3 and 6. This should not be too surprising, since the terms in (5.1) are the ones that are
supposed to take care of the component of the error not reduced by GhB

−1
h GT

h . These
are precisely the discretely divergence–free vector fields.

In Table 15 we also consider the important practical case when β is zero only in part
of the region. For this test we used a preconditioner based on (1.1) instead of (5.1). The
numbers of iterations are comparable to those from Table 8.

5.4. Anisotropic problems. The final set of experiments is shown in Tables 16–17,
where α = β = 1 and we consider two anisotropically refined meshes.

The results in Table 16, show significantly better, and scalable performance for the
method based on the original form compared to the AMG Poisson subspace solver. The
problem from Table 17 is much more challenging, but the number of iterations of our
first preconditioner is still reasonable (if one takes into account that severe anisotropy is
problematic for AMG).

` N n1 n2 n3 n4 ‖e‖L2

2 896 4 (3) 9 (9) 10 (9) 16 (15) 0.011898
3 3520 4 (3) 10 (9) 11 (10) 17 (16) 0.005953
4 13952 4 (3) 10 (9) 12 (11) 18 (15) 0.002977
5 55552 4 (3) 10 (9) 13 (11) 18 (16) 0.001489
6 221696 4 (3) 10 (8) 13 (11) 18 (16) 0.000744
7 885760 5 10 13 18 0.000372
8 3540992 5 11 13 19 0.000186

Table 1. Initial mesh and numerical results for the problem on a square.

` N n1 n2 n3 n4

1 736 4 (2) 9 (8) 7 (7) 11 (11)
2 2888 4 (3) 10 (9) 7 (7) 12 (11)
3 11440 4 (3) 10 (9) 7 (7) 12 (11)
4 45536 5 (3) 11 (9) 7 (7) 12 (11)
5 181696 5 (3) 11 (8) 8 (7) 12 (11)
6 725888 5 11 8 12
7 2901760 5 12 8 11

Table 2. Initial mesh and numerical results for the problem on a disk.
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` N n1 n2 n3 n4

2 972 6 (3) 11 (9) 21 (20) 33 (31)
3 14976 6 (3) 12 (9) 23 (21) 33 (31)
4 59520 7 (3) 12 (9) 23 (17) 35 (23)
5 237312 6 13 24 35
6 947712 7 13 25 35
7 3787776 7 14 25 35

Table 3. Initial mesh and numerical results for the problem on a square
with circular hole.

` N n1 n2 n3 n4 ‖e‖L2

0 722 3 (3) 9 (7) 6 (6) 11 (11) 0.6777
1 5074 4 (3) 10 (9) 9 (9) 16 (15) 0.3776
2 37940 5 (4) 11 (10) 12 (11) 20 (19) 0.2152
3 293224 5 (4) 11 (10) 14 (12) 22 (20) 0.1096
4 2305232 5 11 15 23 0.0549

Table 4. Initial mesh and numerical results for the problem on a cube.

` N n1 n2 n3 n4

0 704 3 (3) 9 (7) 5 (5) 9 (9)
1 4669 4 (3) 10 (9) 7 (7) 13 (12)
2 37940 5 (4) 12 (10) 8 (8) 15 (14)
3 255700 6 (5) 13 (12) 9 (8) 15 (14)
4 1990184 7 14 10 16

Table 5. Initial mesh and numerical results for the problem on a ball.
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` N p
−8 −4 −2 −1 0 1 2 4 8
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1 485 4 4 4 4 4 4 5 6 6
2 3674 6 6 6 6 6 6 7 8 9
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n1 for β = 1, α ∈ {1, 10p}
1 485 5 5 5 5 4 4 5 5 5
2 3674 6 6 6 6 6 5 6 7 7
3 28692 7 7 7 7 7 7 7 7 7
4 226984 7 8 7 7 7 7 8 8 8
5 1806160 8 8 8 8 8 8 8 8 8

Table 8. Initial mesh and numerical results for the problem on a cube
with α and β having different values inside and outside the interior cube.
Multiplicative preconditioner with AMG V-cycles in the subspaces.
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4 226984 11 (11) 11 (11) 11 (11) 11 (11) 11 (10) 15 (14) 19 (17) 21 (19) 19 (18)
5 1806160 12 12 13 13 12 16 21 23 22

Table 9. Numerical results for the problem from Table 8 using multi-
plicative preconditioner with Poisson subspace solvers based on algebraic
multigrid.
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` N p
−8 −4 −2 −1 0 1 2 4 8

n1 for α = 1, β ∈ {1, 10p}
1 716 3 3 3 3 3 4 4 4 4
2 5080 4 4 4 4 4 4 5 6 6
3 38192 5 5 5 5 5 5 5 6 6
4 296032 5 5 5 5 5 5 6 6 6
5 2330816 5 5 5 5 5 6 6 6 6

n1 for β = 1, α ∈ {1, 10p}
1 716 6 6 5 4 3 4 4 4 4
2 5080 6 6 6 5 4 5 5 5 5
3 38192 7 7 7 5 5 5 6 6 6
4 296032 8 8 7 6 5 6 6 6 6
5 2330816 8 9 7 6 5 6 6 6 6

Table 10. Numerical results for the problem on a cube with α and β
having different values in the shown regions (cf. [4]). Multiplicative pre-
conditioner with AMG V-cycles in the subspaces.

` N p
−8 −4 −2 −1 0 1 2 4 8

n5 for α = 1, β ∈ {1, 10p}
1 716 7 (7) 7 (7) 7 (7) 7 (7) 7 (7) 6 (6) 6 (6) 5 (5) 5 (5)
2 5080 10 (10) 10 (10) 10 (10) 10 (10) 10 (10) 10 (10) 9 (9) 9 (9) 9 (9)
3 38192 11 (11) 11 (11) 11 (11) 11 (11) 11 (11) 11 (11) 10 (10) 11 (11) 12 (11)
4 296032 12 (12) 12 (12) 12 (12) 12 (12) 12 (12) 12 (12) 12 (12) 13 (13) 14 (13)
5 2330816 14 14 14 14 14 13 13 14 15

n5 for β = 1, α ∈ {1, 10p}
1 716 7 (7) 7 (7) 7 (7) 7 (7) 7 (7) 7 (7) 7 (7) 7 (7) 6 (6)
2 5080 10 (9) 9 (9) 10 (10) 10 (10) 10 (10) 10 (10) 10 (10) 10 (10) 9 (9)
3 38192 11 (11) 11 (11) 12 (12) 12 (12) 11 (11) 12 (12) 12 (12) 12 (12) 12 (12)
4 296032 13 (13) 13 (13) 14 (14) 14 (14) 12 (12) 15 (14) 15 (15) 15 (15) 14 (14)
5 2330816 15 15 16 16 14 16 17 17 17

Table 11. Numerical results for the problem from Table 10 using multi-
plicative preconditioner with Poisson subspace solvers based on algebraic
multigrid.
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` N p
−8 −4 −2 −1 0 1 2 4 8

n1 for α ∈ {10p, 1, 1}, β ∈ {1, 1, 10−p}
0 722 3 3 5 (5) 4 (4) 3 (3) 5 (4) 14 (11) 48 69
1 5074 10 9 8 (7) 6 (5) 4 (3) 6 (5) 16 (7) 60 102
2 37940 17 14 10 (9) 7 (6) 5 (4) 7 (5) 15 (7) 80 160
3 296032 19 15 11 (9) 7 (6) 5 (4) 7 (5) 16 (7) 91 196

n3 for α ∈ {10p, 1, 1}, β ∈ {1, 1, 10−p}
0 722 3 3 5 6 6 8 20 48 64
1 5074 10 10 10 11 9 13 30 89 120
2 37940 20 17 16 16 12 17 41 134 208
3 296032 27 23 20 20 14 21 50 181 252

n5 for α ∈ {10p, 1, 1}, β ∈ {1, 1, 10−p}
0 722 3 3 5 6 6 8 20 60 91
1 5074 10 10 10 11 9 13 29 100 158
2 37940 20 16 14 15 11 16 37 135 219
3 296032 24 22 20 19 12 20 44 172 286

Table 12. Numerical results for the problem on a cube with α and β
having different values in the three randomly selected groups of coarse
elements shown above. Iteration counts for the considered multiplicative
preconditioners.
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` N n1 n2 n3 n4

2 972 7 12 19 28
3 14976 6 12 19 28
4 59520 7 12 19 28
5 237312 7 12 20 29
6 947712 7 11 20 29
7 3787776 7 12 21 29

Table 13. Initial mesh and numerical results for the singular problem on
a square with circular hole.

` N n1 n2 n3 n4

0 1197 5 11 9 17
1 8248 6 13 12 19
2 60940 7 15 13 22
3 467880 7 15 14 23
4 3665552 8 15 15 23

Table 14. Initial mesh and numerical results for the singular problem on
a union of two cylinders.

` N p
−8 −4 −2 −1 0 1 2 4 8
n1 for α = 1, β ∈ {0, 10p}

1 485 2 3 3 2 4 2 3 3 3
2 3674 5 5 5 6 5 6 6 6 7
3 28692 8 7 8 7 7 8 8 10 10
4 226984 7 7 7 7 7 9 8 9 9
5 1806160 8 8 8 8 8 8 9 10 11

Table 15. Initial mesh and numerical results for the problem on a cube
with β = 0 outside the interior cube. Multiplicative preconditioner with
AMG V-cycles in the subspaces.
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` hy/hx N n1 n5

0 20 604 3 4

1 21 1152 3 7

2 22 2248 5 11

3 23 4440 8 18

4 24 8824 11 33

5 25 17592 16 60

6 26 35128 20 115

7 27 70200 22 217

8 28 140344 23 406

9 29 280632 24 801

10 210 561208 23

11 211 1122360 23

12 212 2244664 22

Table 16. Numerical results for the problem on a cube with a mesh that
is refined only in the x-direction (the ratio of the mesh sizes in y and x
directions is given in the second column). The meshes corresponding to
` = 0 and ` = 3 are shown on the left. Multiplicative preconditioners using
AMG.

` hx/hy N n1

0 22 604 3

1 25 4184 5

2 212 31024 8

3 227 238688 11

4 258 1872064 18

Table 17. Numerical results for the problem on a cube with exponential
local refinement in the y-direction. The x and z directions are refined uni-
formly and the ratio of the mesh size in x-direction and the minimal mesh
size in y-direction is given in the second column. The meshes corresponding
to ` = 0 and ` = 1 are shown on the left.


